
Towards Cooperative Planning of Data Mining
Workflows

Jörg-Uwe Kietz1, Floarea Serban1, Abraham Bernstein1, and Simon Fischer2

1 University of Zurich, Department of Informatics,
Dynamic and Distributed Information Systems Group,

Binzmühlestrasse 14, CH-8050 Zurich, Switzerland
{kietz|serban|bernstein}@ifi.uzh.ch

2 Rapid-I GmbH, Stockumer Str. 475, 44227 Dortmund, Germany
fischer@rapid-i.com

To Appear in: ECML/PKDD09 Workshop on Third Generation Data Mining:
Towards Service-oriented Knowledge Discovery (SoKD-09)

Abstract. A major challenge for third generation data mining and
knowledge discovery systems is the integration of different data mining
tools and services for data understanding, data integration, data prepro-
cessing, data mining, evaluation and deployment, which are distributed
across the network of computer systems. In this paper we outline how
an intelligent assistant that is intended to support end-users in the diffi-
cult and time consuming task of designing KDD-Workflows out of these
distributed services can be built. The assistant should support the user
in checking the correctness of workflows, understanding the goals behind
given workflows, enumeration of AI planner generated workflow comple-
tions, storage, retrieval, adaptation and repair of previous workflows. It
should also be an open easy extendable system. This is reached by basing
the system on a data mining ontology (DMO) in which all the services
(operators) together with their in-/output, pre-/postconditions are de-
scribed. This description is compatible with OWL-S and new operators
can be added importing their OWL-S specification and classifying it into
the operator ontology.

1 Introduction

In the early days of data mining the biggest challenge for data miners was finding
the right algorithm for their task. Todays typical 2nd generation KDD Support
Systems (KDDSS) overcome these issues by providing a plethora of operators.
The commercial systems such as SAS Enterprise Miner and SPSS Clementine or
the Open-Source Systems RapidMiner and MiningMart have 100+ (RapidMiner
which includes WEKA even 500+) different operators to support modeling the
KDD process. These KDDSS have eased the problem of providing access to appli-
cable data mining operators. They do, however, give rise to a new problem: How
can data miners navigate the multitude of data mining operators to construct a
valid and applicable data mining process?

Indeed this problem gets even aggravated. When considering the whole KDD
process [7] the universe of possible combinations is enormous. Consider CRISP-
DM [4]: It consists of 6 phases and 24 tasks. Granted 6 of the tasks are of

an organizational nature, but the remaining 18 technical tasks open a huge
design space [16] of possible KDD processes. As a consequence, most users are
overwhelmed with the decisions they have to face and only explore a small part
of the possible design space.

In this paper we propose that one should use a cooperative planning ap-
proach for designing the KDD process. A third generation KDDSS should em-
ploy a mixed initiative planning [8] approach to user interaction simplifying the
following tasks:

– Effective representation of hundreds of operators used in KDD-workflows.
– Checking the correctness of KDD workflows
– Enumeration of (partial) KDD workflows
– Retrieval of previous (partial) KDD workflows
– Understanding and explanation of given KDD workflows
– Adaptation and repair of KDD workflows

In this paper we focus on the base of such a cooperative KDDSS. Specifically,
we present a Data Mining Ontology (DMO) able to effectively organize hundreds
of operators, which is the base for checking the correctness of KDD workflows and
an HTN based planning component able to effectively enumerate useful KDD-
workflows3. This is the base for our future work concerning a KDD-workflow
explanation component and a KDD process adaptation component, which can be
seen as a case-based planning component assuming that a case base is available.

In the remainder of the paper we first outline related work, and then discuss
DMO and HTN in detail.

2 Previous Work

Several attempts have been made to create KDD support systems but none of
them provides full support for generation of KDD workflows.

Žáková et. al [18] tried to automatically generate workflows using a knowledge
ontology (DM ontology) and a planning algorithm based on the FastForward
(FF) system. They limit themselves only to return the optimal workflow with
the smallest number of processing steps, any other alternative workflows are
not generated. The system does not involve user interaction during workflow
generation.

The IDEA system [2] consists of an Intelligent Discovery Assistant (IDA)
which provides users with systematic enumerations of valid DM processes and
effective process rankings by different criteria (speed, accuracy, etc.). It is based
on an ontology of DM operators that guides the workflow composition and con-
tains heuristics for the ranking of different alternatives. The user is guided in her
choices by choosing weights to trade-off the rankings of the alternatives along

3 This is a report about work in progress. Check http://www.e-lico.eu/eProPlan to
see the current state of the ontology as well as to download the Protege plug-ins we
released so far.

the different dimensions (e.g., speed, accuracy, comprehensiblity) of her desider-
ata. The rankings are based on heuristics contained in the ontology as well as
auto-experimentation.
The NExT system [1] is an extension of IDEA using Semantic Web technology
Specifically it employs an OWL-S [11] ontology to specify the DM operators and
relies on XPlan [10] for planning. While IDEA and NExT provide the user with
a number of alternatives and guide the choice among them they are limited to
proposing simple, non-splitting process flows, unless specific splitting templates
are provided.

MiningMart [12] is a KDD preprocessing tool specialized in data mining
on large data stored in relational databases. The meta-model M4 is used to
store data on two levels: the logic level – describes the database schema and
allows consistent access to information and the conceptual (ontology) level –
uses concepts with features and relationships to model data [6]. The ontology
captures all the data preprocessing therefore gives a better understanding and
reuse of the data. However this meta-model is expressed in UML/XML and
not in an ontology language. The system lacks automatic workflow creation of
DM processes but enables the reuse of preprocessing phases across applications
through case-based reasoning.

The CITRUS project [17] consists of an IDA which offers user-guidance
through mostly a manual process of building the workflows. It uses planning
for plan decomposition and refinement. The system is based on an extension of
SPSS Clementine, which provides a visual interface to construct DM processes
manually.

3 A Data Mining Ontology (DMO) for Planning

We designed a Data Mining Ontology (DMO) to contain all the information nec-
essary to support a 3rd generation KDDSS. As Figure 1 shows (left to right), the
DMO contains information about the objects manipulated by the KDDSS (I/O-
Object), the Meta Data needed, the operators (i.e., algorithms) used by the tool,
and a goal description that formalizes the user’s desiderata. Here we succinctly
describe the I/O-Object and the Meta Data before providing a slightly more
extensive discussion of the Goals and Operators in the following subsections.

Fig. 1. The Upper-Structure of the Data Mining Ontology (simplified)

I/O-Objects are everything that is used or produced by operators. Every I/O-
Object produced by an operator can be used as an input to any operator oc-
curring at some later stage of the KDD workflow. Examples of I/O-Objects
are Data (used and produced), Models (used and produced) and Reports
(produced only).
All of the above have several sub-concepts to specify the description of op-
erator inputs and outputs I/O in a more specific fashion and to be used as
conditions and effects of operators.
Sub-concepts of Data could be AttributeValueDataTable, MissingValueFree-
Data, ScalarDataTable, NominalDataTable, TimeSeries, UnivariateTimeSeries,
MultivariateTimeSeries, etc. Prediction models, delivered by data mining
operators are, e. g., DecisionTree, Decisionlists, RuleSet, LinearModel,

MetaData is used to describe I/O-Objects in more detail, i.e., the DataFormat
such as tables, relations, images, etc. DataColumns can take specific value
types like numerical or categorical values, and have particular roles such as
“weight”, “id”, or “label”.
Furthermore, the meta data can contain aggregate information about the
values found in this column. Examples are mean, variance, range, modal
value, or a flag indicating whether there are missing values.

3.1 Specification of KDD goals and input

A planner requires a goal description consisting of a start state and a final (or
goal) state. A KDD-Workflow final state is reached when the workflow solves
the ”Data Mining Goal” ([4], Sec. II.1.3) and also contains all the evaluation
and reporting needed to let the user assess if it fulfills the ”Success Criterion”.
Additionally, all conditions of the operators included in the workflow have to be
fulfilled.

In the DMO we model goal descriptions using subclasses of Goal (see Figure 1
for a simplified extract.). When specifying the ”Data Mining Goal” the user has
to choose (or compose) a subclass of MainGoal. This main goal can be extended
with compatible OptionalSubGoals (which ones are compatible is modeled with
object-properties in the DMO). For example, the user can specify ”I would like
a KDD-Workflow for PredictiveModeling, evaluated on an IndependentTestSet,
where the performance is reported by a Profit-Chart.”

Several of these Goals require (again modeled as an object-property) that
input (data) is available. Namely, PredictiveModeling requires trainingData and
IndependentTestSet requires testData. So the user is prompted to specify a data
file to be analyzed and to extend it according the meta-data in the DMO.

3.2 Operator Ontology

Operators in KDD-workflows differ from operators usually used in planning in
two very important aspects. First, they do produce new objects. Consequently,
we face a (potentially) infinite planning domain and not a finite one as most
previous work about planning assumes. Second, they only produce new things

but never destroy old things. Thus, our world is monotonically growing with ad-
ditional operator applications, i.e., everything that was valid (or known) in our
world before executing an operator is still valid (known) afterwards. An infinite

Fig. 2. The Top-Level Abstract Operators in the DMO

planning domain usually means that it is undecidable if a planning problem has
a solution. Fortunately, the existence of plans is not really a concern for KDD-
workflows. They always have a number of trivial solutions. E. g. for prediction
tasks we could just compute the mean value or modal value of the target at-
tribute, and build a model that always predicts that value, ignoring everything
else.

Thus, we are not only looking for a plan, but rather for a good plan. The
quality of a plan can be guided by the meta data information by which we enrich
the objects exchanged by our operators. Note that the quality of a plan can be
measured in various ways, but that some of the information is not available at
plan-time. Especially not, the quality of a plan measured as expected predictive
quality of a prediction model, e.g. its accuracy. This main success criterion of
Data Mining is not available before executing the plan. Also, in real-world appli-
cations, we have to respect estimated non-functional constraints such as memory
consumption and computation time of the workflow during planning.

As an example, consider the problem of cleaning a data set from missing val-
ues. Whereas a missing value imputation operation which replaces missing values

by training a model for each column containing missing values, is usually the
preferable method, this may be prohibitively expensive in terms of computation
time when the number of columns is large. In that case, it may be better to go
with the simpler solution of filling in missing values by using the column mean
value. In order for a planner to be capable of taking these considerations into ac-
count, we annotate operators and I/O-Objects with the respective information.
”RapidMiner.ID3”:

Superclass: ClassificationLearning and

(uses exactly 1 AttributeValueDataTable) and

(produces exactly 1 Model) and

(simpleParameter1(name=”minimal size for split”) exactly 1 integer) and

(simpleParameter2(name=”minimal leaf size”) exactly 1 integer) and

(simpleParameter3(name=”minimal gain”) exactly 1 real)

Condition: (AttributeValueDataTable and MissingValueFreeData and

(inputAttribute only (hasAttributeType only Categorial)) and

(targetAttribute exactly 1 (hasAttributeType only Categorial))

)(?D), noOfRecords(?D,?Size), ?P1 is ?Size / 100

→ uses(this,?D), simpleParameter2(this,?P1)

Effect: uses(this,?D), hasFormat(?D,?F), inputAttribute(?D,?IA),targetAttribute(?D,?TA),

→ new(?M,?D), DecisionTree(?M), produces(this,?M), hasFormat(?M,?F)

inputAttribute(?M,?IA),predictedAttribute(?M,?TA),

Fig. 3. A basic operator: RapidMiner.ID3

Operator in- and output and parameters. The behaviour of each Data
Mining operator is controlled by a set of parameters usually specified as key-
value-pairs for an operator. Such parameters can be quite simple (e.g. k in a
k-fold cross validation), quite complex (such as a reference to a column in a
DataTable on which the operator is supposed to operate or an SQL statement
as a target expression for attribute construction), or sometimes even structured
(like a list of parameters to be optimized by an optimization operator).

Such restrictions on in- and output and parameters of operators are specified
in OWL-DL. Every input of any operator must be a sub-object-property of uses,
every output of any operator must be a sub-object-property of produces, and ev-
ery parameter of any operator must be a sub-data-property of simpleParameter.
uses and produces have a domain restriction to Operator and a range restriction
to I/O-Object. Figure 3 shows an example.

Operator conditions and effects. Operators may specify restrictions on their
input. E. g., most data mining operators will only operate on data sets satisfying
particular properties (e.g., having numerical or categorical attributes, or not
containing any missing values).

The effects of operators depend on parameter values and on the operator’s
input. E. g., a discretization operator’s output is equal to its input with the
exception of a set of columns, which are specified by a parameter. In the output
data set, these columns’ value types will be changed to categorical.

Operator conditions and effects are described as rules expressed in the Se-
mantic Web Rule Language (SWRL [9]). As an extension to SWRL we have the
special object reference this, which is the operator instance to which the rule
refers. Also, we added three new built-in predicates that allow the creation of
new unique object IDs for the generated outputs in the operator effects. They
are permitted in the consequent of effect-rules only. These are:
new(NewObject). Exactly one new unique object ID is generated and bound

to the argument variable for each such literal (independent of how many
solutions satisfy the premisses).

new(NewObject,OldObject). Exactly one new unique object ID is gener-
ated and bound to the argument variable for EVERY different OldObject
computed by the preconditions (independently of how often this OldObject
is part of a solution satisfying the premisses).

copy(NewObject,OldObject,Except). One new unique object ID is gener-
ated and bound to the argument variable for EVERY different OldObject
computed by the preconditions (independently how often this OldObject
is part of a solution satisfying the premisses), additionally all stored prop-
erty facts involving the OldObject except those in Except are copied to the
NewObject. Except is a conjunction of property literals where the OldObject
must be one of the arguments.

The condition of an operator is a set of SWRL rules, where the antecedent
specifies the condition and the consequent contains all the input- and parameter-
properties of the operator. Effects are also sets of SWRL rules, they can contain
all three new built-in predicates, must contains all the output-properties of the
operator and may also create new meta-data to describe the new I/O-Objects.
All variables that occur in the conclusion of a condition or effect rule must be
either bound by the premisses of the effect rule or be returned as a NewObject by
one of the above special literals. If there is more than one rule for conditions and
or effects, the resulting condition/effect-rule is the union of all antecedent of the
condition/effect-rules imply the union of all consequents of the condition/effect-
rule.

Operator nesting. Operators can be nested, i.e., they can contain sub-workflows.
E. g., a cross-validation can contain a data mining operator for generating a pre-
diction model from a training set and an operator for applying the model on
a test set. But usually, such a nesting is not restricted to single operators, but
may involve complex workflows. Therefore we allow such operators to reference
nested HTN tasks (see Section 4). Similar to the post-conditions specified for
each operator, we specify conditions that the enclosing operator guarantees to
and requires from its nested workflow.

Operator Inheritance & Subsumption Any operator not only inherits the
IO restrictions from it’s super classes (via normal ontological reasoning), it also
inherits all conditions and effects from them (to be handled by our operator

extension). If an operator has several rules for conditions or effects, the resulting
condition- or effect-rule is the union of all antecedent → the union of all conse-
quent. This leads to the following intuitive definition of an operator subsuming
another:

1. the more special operator satisfies all input, output, and parameter restric-
tions of the more general operator,

2. the more general operator is applicable in all the situations, the more specific
operator can be applied to, and

3. the more specific operator has at least all the effects of the more general one.

Formally, this can be captured by combining class subsumption (vDL) for
I/O restrictions and instance reasoning with respect to a set of ontological axioms
(a tbox) (|=(tbox)) together with θ-subsumption for conditions and effects.

Definition 1 (Operator Subsumption). An operator OP1 subsumes another
operator OP2 (written OP1 vOP OP2), iff OP1 vDL OP2, and there exist a
substitution θC for the condition and θE for the effects such that:

– antecedent(condition(OP2)) |=(tbox) θCantecedent(condition(OP1)),
– consequent(condition(OP2)) |=(tbox) θCconsequent(condition(OP1))
– antecedent(effects(OP2)) |=(tbox) θEantecedent(effects(OP1)), and
– consequent(effects(OP2)) |=(tbox) θEconsequent(effects(OP1)).

3.3 Using OWL-S to import operators

The operators present in the DM ontology are of course limited to the existing
operators sources (RapidMiner, Weka, etc.). As new operators will be developed
our ontology must be extendible, to allow the users to use them for planning.
Thus, we envisaged a way of extending the ontology with new operators based
on a description of the operators in a language compatible with the specification
from our ontology.

Each new operator has to be available as a Web service, described using a
description language (WSDL) and needs to be semantically described in OWL-
S [11]. I.e. it describes what it does in the ServiceProfile, how it works in the
ServiceModel and how to access it in the ServiceGrounding. An operator can be
added in the DM ontology if the given OWL-S description matches our operator
description. From the OWL-S description we are mainly interested in the Ser-
viceProfile and ServiceGrounding, while the ServiceModel does not concern our
approach for now.

The ServiceProfile describes what the service does, it is similar to our Op-
erator concept from the DM ontology. Both the ontology and OWL-S have to
specify the Inputs, Outputs, Preconditions and Effects. The Preconditions and
Effects should be specified in SWRL to be compatible to our representation
from the ontology. The Inputs and Outputs need to be described by using the
concepts from our ontology.

ServiceGrounding specifies how the service can be accessed and executed.
It contains the WSDL location of a given operator that can be stored in our
ontology as an annotation of the operator to be passed to an execution engine.

Therefore enhacing the operators with OWL-S facilitates the process of im-
porting new operators thus allowing a flexible and standardized way to enrich
the DM ontology.

4 An HTN for Data Mining

Hierarchical Task Network planning (HTN) [14, 13] originates from more than 30
years ago. It provides a powerful planning strategy using hierarchical abstraction
and by that is able to handle large and complicated real world domains [13]. Also
it is more expressive than classical planning being able to express undecidable
problems, and therefore it is also4 undecidable, if a plan exists in general [13].

Recently, AI planning techniques have been proposed as a way to automate
(totally or partially) workflow composition especially Web services composition
[15, 10]. Several planning techniques were compared in the context of Web ser-
vices composition and as a conclusion HTN planning performs best in automa-
tion of Web services composition [3].

For us an HTN (similar to [5, 13]) consists of the following:

– A set of available tasks to achieve the possible Goals.
– Each task has an I/O specification (a list of property - ?variable : class) and

a set of associated methods (that share the I/O specification of the task)
that can execute it.

– Each method has a
condition restricting it’s possible applications, and a
contribution specifying which Goals it reaches, and a
decomposition into a sequence of (sub-)tasks and/or operators, that - ex-

ecuted in that order - achieve the task.

Therefore an HTN planning problem consists of decomposing the initial task
using applicable method that contribute to the current goals into applicable
operators and sub-tasks and then recursively decompose each sub-task until we
obtain a sequence of applicable operators only.

Fig.4 shows an example HTN to illustrate how one could specify the gener-
ation of KDD-workflows.

Even this simple HTN already contains some special built-in tasks, namely
the getPlan/reapplyPlan and the chooseOp/applyOp pairs of tasks. It also illus-
trates the use of negation as failure (unknown) available in conditions. getPlan
normaly plans the task it gets as it’s first argument, it only additionally returns
the plan it generated for that task, such that it can be reused later again. If the
training data need a transformation before modeling this transformation needs

4 The introduction of new objects, leads to potentially infinite - and therefore unde-
cidable - planning problems (Sec.3.2).

Task: DoDatamining

I/O: [goal - ?G:UserGoal].

Method: ”Propositional predictive Data Mining of attribute value data”.

condition: trainingData(?G,?RTD), AttributeValueDataTable(?RTD),

unknown(subgoal(?G, ?E), LearnTestSetSplit(?E))

contribution: PredictiveModeling(?G).

decomposition:

ReadData([produces - ?RTD]),

chooseOp(SupervisedLearner([in - ?RTD]),?G,?ModelOp,?Requirements),

getPlan(TransformData([in - ?RTD, out - ?TD, goal -?Requirements]),?DataTransformationPlan),

applyOp(?ModelOp,[uses -?TD, produces - ?M]),

ReadData([produces - ?RED]),

OptionalEvaluation([goal - ?G, model - ?M, preprocessing - ?DataTransformationPlan]),

OptionalApplication([goal - ?G, model - ?M, preprocessing - ?DataTransformationPlan]).

Method:

. . .

Task: OptionalEvaluation

I/O: [goal - ?G:UserGoal, model - ?M:Model, preprocessing - ?DataTransformationPlan:Plan]

Method: ”No evaluation wanted”

condition: unknown(subgoal(?G, ?E), Evaluation(?E))

contribution: .

decomposition: .

Method: ”Evaluation of model performance on independent testdata”

condition: subgoal(?G, ?E), testData(?E,?RED), AttributeValueDataTable(?RED).

contribution: subgoal(?G, ?E), IndependentTestSet(?E).

decomposition:

reapplyPlan([in- ?RED, out - ?ED],?DataTransformationPlan]),

EvaluateModel([data - ?ED, model - ?M, produces - ?E),

GenerateReport([uses - ?E]).

Fig. 4. A simple extract from our HTN under development

to be reapplied (using reapplyPlan) on evaluation and application data, before
the learned model can be applied to them as well. This is not just a simple
”do the same again”. The data transformation generated by the planner may
involve operations like ”feature selection”, ”Discretisation”, ”random sampling”
that would behave differently on different data. Therefore the reapplication of
plans must adapt the plans to corresponding dual operations ”Select the same
features”, ”Discretize into same Bins” ”don’t sample”, i.e. all data dependent
operations have to store their choices into ”preprocessing models” and must have
a dual re-application operator (specified in the ontology). HTN planning does
straight forward planning, i.e. when an operator is applied all its input is already
produced and available. However, in KDD-workflows selection of the modeling
operator is usually done before preprocessing to set up the goals of preprocess-
ing. This is achieved with the chooseOp/applyOp pair. chooseOp selects5 an
operator from the operator class specified in its first argument just as normal
planning does, but opposed to planning it doesn’t test applicability nor does
it execute the effects, it only returns the conditions and the chosen operator.
applyOp is just a meta-call that allows the operator to be a variable.
5 Currently just by enumeration, maybe later with some heuristic guidance

5 Conclusions

In this paper we presented the basis of an open system for cooperative plan-
ning of KDD-Workflows. The system is currently developed within the e-LICO
project as a set of Protege 4 plugins. The plugins (goal editor, condition/effect
editor, OWL-S im-/export, restricted abox/rule reasoning, operator subsump-
tion, workflow-checking and an HTN-planner) as well as the DMO are to be
released to the public within this year.

We expect HTN-planning to be more successful in generating useful KDD-
workflows, in the presence of a realistic (high) amount of operators, than forward
planning tried in previous work so far, as the HTN grammar rules allow addi-
tional expert knowledge to be coded into the plan generation process, which
is not possible in simple Strips-like forward planning. Nevertheless, we expect
the most gain in user-productivity of the 1st version described here lies in the
correctness-checking of (user-designed) KDD-workflows at design-time – check-
ing for slight errors in operator applicability that are already detected before
execution and will not crash the workflow execution (after some hours).

Planning of KDD-workflows is always limited by the information available
at design/plan time. However designing optimal performing KDD-workflows is
still a highly creative and interactive process, where most insights and design
decisions are based on and revised according to the performance measured in
the evaluation-phase of the KDD-workflows, i.e. with information available after
execution and not at plan-time.

Data-Mining-Performance optimized KDD-workflows resulting from this ex-
pensive iterative design cycle are, therefore, very valuable and should be recorded
in a case-base. Especially as the current knowledge on data mining does not allow
to distinguish good from bad performing workflows without executing them. For
future work we plan to extend the system to case-based planning, i.e. retrieval
and adaptation of partial fitting KDD-workflows. This will allow to make this
valuable and costly acquired knowledge available to later workflow design.

Acknowledgements: This work is partially supported by the European Com-
munity 7th framework program ICT-2007.4.4 under grant number 231519 “e-
Lico: An e-Laboratory for Interdisciplinary Collaborative Research in Data Min-
ing and Data-Intensive Science”. The DMO described in this paper is the result of
ongoing collaborative work within the e-LICO project of Ingo Mierswa, Melanie
Hilario, Alexandros Kalousis, Nguyen Phong and the authors. For ease of pre-
sentation we made some simplifications with respect to the full e-Lico DMO.

References

1. A. Bernstein and M. Daenzer. The NExT System: Towards True Dynamic Adap-
tions of Semantic Web Service Compositions (System Description). In Proceedings
of the 4th European Semantic Web Conference (ESWC ’07). Springer, March 2007.

2. A. Bernstein, F. Provost, and S. Hill. Towards Intelligent Assistance for a Data
Mining Process: An Ontology-based Approach for Cost-sensitive Classification.

IEEE Transactions on Knowledge and Data Engineering, 17(4):503–518, April
2005.

3. K. S. M. Chan, J. Bishop, and L. Baresi. Survey and comparison of planning
techniques for web services composition. Technical report, Univ. of Pretoria, 2007.

4. P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and
R. Wirth. Crisp–dm 1.0: Step-by-step data mining guide. Technical report, The
CRISP–DM Consortium, 2000.

5. K. Erol, J. Hendler, and D. Nau. HTN planning: Complexity and expressivity. In
Proceedings of the National Conference on Artificial Intelligence, pages 1123–1123.
JOHN WILEY & SONS LTD, 1995.

6. T. Euler and M. Scholz. Using Ontologies in a KDD Workbench. In P. Buitelaar,
J. Franke, M. Grobelnik, G. Paa?, and V. Svatek, editors, Workshop on Knowledge
Discovery and Ontologies at ECML/PKDD ’04, pages 103–108, 2004.

7. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The kdd process for extracting
useful knowledge from volumes of data. Commun. ACM, 39(11):27–34, 1996.

8. G. Ferguson, J. Allen, and B. Miller. Trains-95: Towards a mixed-initiative plan-
ning assistant. In Proceedings of the Third Conference on Artificial Intelligence
Planning Systems (AIPS-96), pages 70–77. AAAI Press, 1996.

9. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

10. M. Klusch, A. Gerber, and M. Schmidt. Semantic Web Service Composition Plan-
ning with OWLS-XPlan. In Proceedings of the 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web. AAAI Press, 2005.

11. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan, and K. Sycara. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, 2004.

12. K. Morik and M. Scholz. The MiningMart Approach to Knowledge Discovery in
Databases. In N. Zhong and J. Liu, editors, Intelligent Technologies for Informa-
tion Analysis, pages 47–65. Springer, 2004.

13. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004.

14. D. Nau, S. Smith, and K. Erol. Control strategies in HTN planning: Theory versus
practice. In Proceedings of the National Conference on Artificial Intelligence, pages
1127–1133. JOHN WILEY & SONS LTD, 1998.

15. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web, 1(4):377–396, 2004.

16. K. T. Ulrich and S. D. Eppinger. Product Design and Development. McGraw-Hill,
New York, 3rd rev. ed. edition, 2003.

17. R. Wirth, C. Shearer, U. Grimmer, T. P. Reinartz, J. Schlösser, C. Breitner, R. En-
gels, and G. Lindner. Towards process-oriented tool support for knowledge discov-
ery in databases. In PKDD ’97: Proceedings of the First European Symposium on
Principles of Data Mining and Knowledge Discovery, pages 243–253, London, UK,
1997. Springer-Verlag.

18. M. Žáková, P. Křemen, F. Železný, and N. Lavrač. Planning to learn with a
knowledge discovery ontology. In Planning to Learn Workshop (PlanLearn 2008)
at ICML 2008, 2008.

